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Fluid simulations of tokamak turbulence in quasiballooning coordinates
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A set of coordinates for simulations in toroidal magnetic geometry, called quasiballooning coordi-
nates, is proposed and implemented. Quasiballooning coordinates are straight-field-line coordinates in
which one of the coordinate directions is as close as possible to that of the magnetic field consistent with
the near-parallel grid lines meshing exactly (without interpolation) as they cross the boundaries of the
simulation region. This allows the true periodicity conditions in the toroidal-poloidal plane to be
satisfied in a straightforward and seamless way, even for sheared magnetic fields. Quasiballooning coor-
dinates are useful in the simulation of instabilities and turbulence of interest in fusion plasmas since the
number of grid cells needed to represent structures that are elongated along the magnetic field with a
given resolution is greatly reduced compared with toroidal-poloidal or other nontwisting coordinates.
For explicit codes, they allow shorter time steps, and it is anticipated that for particle codes, their use
will naturally minimize the numerical noise. The key details necessary for the implementation of quasi-
ballooning coordinates, both in finite-difference and pseudospectral fluid codes are presented, and a fluid
code has been written. The advantages of quasiballooning coordinates are demonstrated by applying this
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code to turbulence driven by the v instability.

PACS number(s): 02.70.—c, 52.65.+z, 52.35.—g, 52.55.Fa

I. INTRODUCTION

Many instabilities of interest in tokamak plasmas, such
as  ion-temperature-gradient-driven  (ITG). modes,
trapped-electron modes, and pressure-driven magnetohy-
drodynamic modes, have a mode structure which is high-
ly elongated along the equilibrium magnetic field. ITG
modes, for example, have k,/k, ~p; /Ly [1], where k|
and k,; are the wave numbers, respectively, along and
perpendicular to the magnetic field, p; is the thermally
averaged ion gyroradius, and L, is the gradient scale
length of the background temperature profile. The
elongation direction (i.e., the direction of the magnetic
field) is generally neither purely toroidal nor poloidal.
Coordinates that are aligned with the magnetic-field lines
have been used widely in linear analysis [2-4], and in
some calculations of equilibria [5]. There are now
numerous three-dimensional nonlinear simulation studies
of instabilities and turbulence in the published literature.
Recent examples include fluid simulations [6,7] and parti-
cle simulations [8,9] of ITG-driven turbulence, fluid
simulations of trapped-electron-driven turbulence [10],
and fluid simulations of resistive kink modes [11]. Most
of these simulations have either used coordinates aligned
with the poloidal and toroidal directions [7,8,11], or have
ignored or significantly altered the periodicity conditions
that the fluctuation fields actually satisfy [6,9]. An excep-
tion is the work of Carreras et al., in which purely spec-
tral representations in the toroidal-poloidal surfaces of
the fields were used. The convolution calculations needed
to calculate the nonlinear terms in this last approach are
expensive and impose much more severe limits on the
resolution attainable than would a configuration-space
based approach in which the nonlinearities are local.
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To understand that standard toroidal-poloidal grids are
tremendously wasteful of grid resolution, consider Figs.
1. The grid cell size needed to resolve a structure is given
by the requirement that some number (of order 1) grid
cells fit entirely inside the structure. Thus, for typical
values of the magnetic safety factor ¢ ~1, a much finer
grid is needed in ‘“standard” toroidal-poloidal coordi-
nates [Fig. 1(a)] than in “ballooning coordinates” [Fig.
1(b)], in which one of the coordinates is exactly aligned
with the magnetic field. The ratio of the number of grid
cells needed to resolve an elongated structure in standard
vs ballooning coordinates is approximately a, /a;, where
a, is the aspect ratio of the structure and a, is the aspect
ratio of the toroidal-poloidal domain. For the ITG insta-
bility in fusion devices, for example, this ratio is typically
of order 100. Ballooning coordinates have the disadvan-
tage, however, that the toroidal-poloidal periodicity con-
ditions are difficult to implement satisfactorily. In Fig.
1(b), the top of the elliptical structure that crosses the
boundary lies on a grid line on the right-hand-side of the
boundary, but not on the left. In order to use ballooning
coordinates, some form of interpolation is needed to
make the connection across the boundary. While this ap-
proach merits investigation, it has the disadvantage that
the numerical representation of the fields and operators
in the region near the boundary where the interpolation
is done is different from that in the rest of toroidal-
poloidal plane.

Here, nonlinear simulation methods that use what will
be termed ‘“‘quasiballooning coordinates,” are introduced
and developed. In quasiballooning coordinates, one of
the coordinate directions lies approximately (not neces-
sarily exactly) along the magnetic field. A lack of align-
ment is allowed which has a negligible effect on the reso-
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lution, but permits the implementation of the correct
periodicity conditions via exact offset-periodic meshing of
the grid lines at opposite ends of the simulation region
[Fig. 1(c)]. Quasiballooning coordinates allow calcula-
tions in configuration space. Since most plasma non-
linear terms are local or nearly local in configuration
space, their computation is much cheaper there than in
wave-number space. Finite-difference and discrete-
Fourier methods are both applicable within each radial
surface. For fluid or Vlasov-fluid-type simulations, the
reduction in computer time needed per time step de-
creases in proportion to or more rapidly than the de-
crease in the number of grid cells needed. Also, in many
cases, the coarse parallel grid automatically filters out
physically irrelevant but numerically problematic high-
frequency modes, permitting much longer time steps for
explicit time stepping, in both particle and fluid codes.

In this paper, grid representations and applications to
fluid simulations in slab geometry are discussed in detail.
In addition to the work reported here, a toroidal partially
linearized gyrokinetic particle code that uses quasibal-
looning coordinates has been developed. This will be re-
ported on in future publications.

The outline of the paper is as follows. In Sec. II the
basic coordinate system is defined and its resolution prop-
erties discussed. Methods for calculating radial deriva-
tives when the coordinate system is allowed to twist to
follow a sheared magnetic field are discussed in Sec. III.

FIG. 1. Grid (dotted lines), magnetic field (arrows), and tur-
bulent structures (ellipses) at a single radial location, as seen in
(a) toroidal-poloidal coordinates, (b) ballooning coordinates, and
(c) quasiballooning coordinates.
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In Sec. IV, the application of discrete Fourier representa-
tions and fast Fourier transforms in quasiballooning
coordinates is considered. Section V describes some de-
tails that were not covered in previous sections of a fluid
code in which quasiballooning coordinates were imple-
mented. The implementation of radial boundary condi-
tions, in particular, is discussed there. In Sec. VI, the pri-
mary advantages of quasiballooning coordinates are
demonstrated by comparing the results of simulations of
parallel-velocity-gradient (V) driven turbulence in
which quasiballooning coordinates are used to results in
which toroidal-poloidal and other (more optimized)
nontwisted coordinates are used. Finally, the results of
this paper are summarized and discussed in Sec. VII.

II. BASIC METHOD

Let ¥, 6, and § be radial, poloidal, and toroidal
straight-field-line coordinates, such as Hamada coordi-
nates [12], normalized so that their values range from 0
to 1. A suitable coordinate choice is (V,x,§), where
x=6—1UV),. Here, T(V)=~u(V) where (V) is the mag-
netic rotational transform. The periodicity conditions
that a field ¥ must satisfy are

YV x+1L,E=9%V,x,5), (1a)

The second of these is the one that causes the complica-
tion in ballooning coordinates, in which 7(F¥) is chosen to
be identically equal to «(¥). Quasiballooning coordinates
can be obtained as follows: The ¥V and ) coordinates are
discretized on a mesh V;=(i —1)/Ny, x;=(j —1)/N,,
where i=1,2,...,Ny, and j=12,...,N,. While the
discretization of y needs to be uniform, there is no such
requirement on the discretization of V. At each radial
mesh surface, V=V, an integer m (i) is chosen that to
minimize «(V;)—1(i), where i(i)=m(i)/N,. The periodi-
city condition at the {=0,1 boundary is exactly satisfied
by setting

Y(i,j —m (i),1)=14(i,},0) . (1c)

Both the continuous and discrete periodicity conditions,
given respectively by Egs. (1b) and (lc), are one to one
since they map each radial (V) surface to itself with a
shift [2(¥) or m (i)] which is constant on each radial sur-
face.

The parallel derivative at V' =V is given by

v”,:gagﬂu V) —2i)]a/3y -

It is straightforward to show that the resolution loss
due to the difference between 7 and ¢ is negligible. For a
highly elongated structure, we have 3/36>>V,. Our
choice of 7 satisfies [0—¢| <1/(2N,), while the shortest
length scale that is resolved by the y mesh is 1/N,. The
maximum discretized (eigen)value of (¢—7)(3/3)) is
therefore comparable to 1, so that the number of mesh
surfaces N needed in the § direction is set only by the
parallel length scales of the structure. This is the optimal
situation, i.e., ballooning coordinates, in which = iden-
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tically, are no better. In toroidal-poloidal coordinates
(=0, y=20, and v”=a/ag+La/ae), the resolution of the
poloidal (0) mesh is wasted unless N §2N9=NX, since
typically t=0 (1), in tokamak plasmas. The reduction in
the number of grid points that can be attained is propor-
tional to the elongation of the structures along the mag-
netic field in the normalized toroidal-poloidal plane. For
ITG turbulence, for example, a reduction of order 10 %is
to be expected.

There is a possible intermediate choice of coordinates
that can be used. These will be called “nontwisted-
quasiballooning” coordinates. Here, 7 is chosen to be in-
dependent of ¥ and to match «(V) at a single V (prefer-
ably at or near the middle of the simulation region). It
will be shown that for sheared magnetic fields, the restric-
tion that 7 be independent of V causes a significant degra-
dation in the resolution relative to quasiballooning coor-
dinates, even if the radial extent of the simulation region
is much smaller than the profile gradient scale lengths.

In the large-aspect-ratio torus limit, the choice of coor-
dinates described above is nearly orthogonal. This takes
care of the calculation of the discretization of the com-
ponent of the perpendicular derivative in a magnetic sur-
face, since

bXVY
VvV

where b is the unit vector in the direction of the magnetic
field and € is the inverse aspect ratio.

It is possible to use the same idea and transform ¢ in-
stead of 6. One then deals with §(i)=m (i) /N instead of
T. The quasiparallel coordinate is then 6. This choice
may have some advantages, since the periodicity condi-
tions in the toroidal direction, which is the symmetry
direction, are unaltered by the transformation. The
disadvantage of this choice is that the resulting coordi-
nates are highly nonorthogonal, even in the large-aspect-
ratio limit, although an expansion in the aspect ratio of
the turbulent structures may render the effects of this
nonorthogonality small in some cases.

The above formulation is directly applicable to simula-
tions of a full cross section of a tokamak or to a thin
toroidal annulus (i.e., region that is of small extent in V).
There have been several simulation studies that have used
various forms of ‘“flux-tube” geometry [16]. In these
cases, the simulation region is a long thin tube (usually of
rectangular cross section) centered on a single magnetic-
field line. The long axis of the tube is along the field line.
The particular implementations have wused either
nontwisted coordinates or ballooning coordinates. The
boundary conditions are usually taken to be periodic in
the direction along the magnetic field and in the direction
perpendicular to the field and the equilibrium gradients.
The validity of results from simulations using such
geometries must be tested by changing the size of the
simulation region in order to verify that there are spatial
correlation lengths that are shorter than the system size
in each direction. If this can be done, then such
geometries offer much better poloidal resolution than
thin-annulus or full-cross-section geometries. The disad-
vantages are that the tests must be done a posteriori, and

v=[v+ow%]§%,
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that they cannot easily be used to investigate situations
where the fluctuations have multiple components of
which one or more have a long correlation length in some
direction.

Quasiballooning coordinates and the other construc-
tions discussed in the subsequent sections of this paper
are equally useful for simulations in a flux-tube geometry.
To apply them to this geometry, the domain L, of y is
viewed as being much smaller than the poloidal extent of
the torus. If we take LX=27T/MX, where M, is an in-
teger, then ¢ is replaced by the effective rotational trans-
form ¢, =tM, for the smaller domain in doing the above
coordinate and periodicity constructions. Any poloidal-
angle dependence of equilibrium quantities that is present
in the physical model equations used is then taken to be a
function of the parallel coordinate only. Quasiballooning
coordinates, with the associated offset periodic connec-
tion in the quasiparallel direction, then yield the correct
physical periodicity conditions in the parallel direction.
The independence of the simulation results on the size of
the simulation region then only needs to be checked ex-
plicitly for the directions perpendicular to the magnetic
field, but not for the parallel direction. Furthermore, the
radial derivative construction given in the next section
guarantees that poloidal grid resolution does not degrade
as a function of { because of the decrease in the radial
separation of the constant-y mesh surfaces as a function
of £.

The implementation of quasiballooning coordinates is
quite straightforward and the main issues involved for
fluid (finite-difference and pseudospectral) codes are ad-
dressed in the next three sections. The main restriction
on the «(¥) profiles that can be used is that they be
reasonably smooth.

III. RADIAL DERIVATIVES

Radial derivatives are involved in nonlinear terms,
finite-gyroradius terms, and diffusion terms. In order to
use any twisted coordinate system, including quasibal-
looning coordinates, it is necessary to have valid discreti-
zations of any radial derivatives that are needed. These
discretizations should be consistent with the correct
physical periodicity conditions and should have some
(grid-scale) symmetry in the toroidal angle. Consider, for
example, the radial first derivative

9y

=9
oy &) )

0 aVX 8)(’

Since 9vy/3dV]|, is continuous across the £{=0, {=1
boundary, it follows that 3y /dV/|, is generally discon-
tinuous. If the two terms on the right-hand side of Eq.
(2) are discretized separately, then there is generally no
guarantee that the discontinuities would cancel. Further-
more, as one moves along a field line, 3/3V| y increasing-
ly points in the poloidal direction, so that resolution in
the x direction is lost. As an example, consider the com-
mon situation where the ion Larmor radius p; sets a
minimum spatial scale of physical interest. If the po-
loidal resolution is set at p; at one value of the parallel
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coordinate, then the grid points involved in the discreti-
zation of 3y /3 V| , may become a distance greater than p;
apart. The radial derivative expression then becomes
inaccurate for structures of size p; in the Y direction.
This resolution loss can be very large either for structures
that are much more elongated in the radial direction than
in the poloidal direction or in flux tube geometries where
the variation in t; with radius is large because of the
small perpendicular extent of the system. Also, the
dependence on parallel coordinate introduces a fake
linear coupling. Furthermore, as will be discussed in Sec.
V, discontinuities in the discretization across the parallel
boundary can lead to fast phenomena that cause numeri-
cal problems.

A better procedure, which avoids these problems, is to
discretize the radial derivative directly. The radial
difference of a field ¥ on a (V, ) mesh line (i, j) is formed
from quantities $ that represent values of the field at
different radial locations i*1, i+2, etc., but at the same
value of 6 (not y). Since this value of 6 generally lies in
between the Y mesh surfaces, the {/J\’S must be constructed
by interpolation in . Figure 2 shows the intersections of
constant-V and -y surfaces with the {=0 surface (a) and
with a £0 surface (b), viewed in (V,0) configuration
space. The lines for which 6 is equal to the value at the
grid node at which the difference is being taken are
shown. Their intersections with the adjacent radial sur-
faces do not coincide with those of the constant-y mesh

surfaces. Stated formally, a discretization is used that
has the form
[AY), ;=3 a;Pli +1,6[i,j,k],k) , 3)
!

where 0[i, j, k] denotes the value of 0 at the (¥, 60,§) index
values (i, j,k). Since 0[i,j,k] in general lies between grid
lines at radial surface i +1/ unless / =0, interpolation be-
tween values of ¢ at the grid points is used to determine
¢. For the resulting difference formula to not have

_1

AV|0¢(i’j’§)= 2AV
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FIG. 2. Intersections of constant-V and -y surfaces with the
£=0 surface (a) and with a {0 surface (b), viewed in
configuration (¥,60) space. Lines for which 6 is equal to the
value at the grid node at which the difference is being taken are
shown. The solid dots are the intersections of the grid lines
with the constant-§ surfaces, the open circles are the points at
which the fields are needed for the radial differences, the solid
lines are lines of constant 8 and the dotted lines are lines of con-
stant §.

discontinuities in the § (or in the k index), an interpola-
tion scheme, such as splines, of at least one order higher
than the derivative needed should be used. Alternatively,
a Fourier representation in y provides a natural interpo-
lation scheme with infinite-finite-order accuracy.

As a simple illustration, the result obtained by this pro-
cedure for a centered-difference approximation to a radial
first derivative, using linear interpolation in Y, is

(Wi +1,5,6— 9 —1,5,O)+EWli + 1,7 +m G +1D)—m (i), E]—¥[i +1,j,E])

+EWLi —1,4,6]—9li —1,j +m (i —1)—m(i),§])} . @)

The first line of terms on the right-hand side can be
identified as the centered-difference discretization of
oY /aV| y» While the remaining terms are a discretization
of {T'(V)3y/dx. Equation (4), as an approximation to
Eq. (2), is second-order accurate in Ny 1 and first-order
accurate in N 1. It is defined for all values of & between
0 and 1, and is therefore defined when § is discretized on
a mesh. In practice, one would use either a spline of at
least quadratic order or a Fourier representation to do
the interpolation in Y so that the interpolation errors are
not inherently larger than the errors inherent in the
difference formula.

The E X B advection nonlinearity has the property that
its form is unaltered by the transformation to quasibal-
looning coordinates. The respective nonlinear terms have
the form

[
V. (Vepf)=[6,f1+0(),

where V3 =bXV,é is some EXB-like velocity, ¢ is
some potential function, and € is the local inverse aspect
ratio and

_9 |,of |_8 |, of
[6S1=5y |$36 |20 [PV | (5a)
For any value of S, the transformation (V,60,§)

—(V,Y,§), where
Y=6—-1WV)S

preserves the form of [¢, f]. That is,
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[¢,/1=[¢,f];
d é af

= _9
—av |Tay

Y

f

av | (5b)

¢

The V derivatives are with 6 fixed in Eq. (5a) and with Y
fixed in Eq. (5b). This offers at least three alternative pos-
sibilities for the discretization of such nonlinear terms: (i)
The first possibility is to set S=¢&, so that Y=y and
discretize the last form directly. Although this is formal-
ly uniformly accurate to the order of the differencing for-
mula used, it suffers from loss of resolution away from
£=0 and results in an expression that is discontinuous
across the {=0—1 boundary. We have tried this method
in the fluid code discussed below and found that unless
the perpendicular diffusion is large enough to ensure very
high grid accuracy, a discontinuity is produced in the
fields at the z=0—1 boundary that results in very large
parallel diffusion rates. This in turn produces severe
timestep constraints in an explicit code. (ii) The second
possibility results from noting that Egs. (5) hold for any
value of S. At each z, choose S,(i) and S,(i) such that
S1(i)=§=8,(i), and such that N,[0(i))—0(i—1)]S,(i),
N, (o) =i —1)]S,(), N, [ti +1)—2(i)]S,(i), and
N, [%i +1)—%i)]S,(i) are all integers. Because of the
choice of S, and S,, no interpolation is needed to calcu-
late [qu,f]S1 and [¢,f]sz. The nonlinear term at S =¢ is

then calculated using interpolation in § between S; and
S, using [cj),f]sI and [¢,f]sz. This method seems to

offer interesting possibilities. An important question is
whether the requirement on the values of S is too restric-
tive to allow sufficiently accurate interpolation. (iii) The
third possible method is to use Eq. (5a) directly, together
with the derivative construction of the form of Eq. (3).
This is the option that has been most used in the fluid
code discussed below.

IV. FOURIER METHODS

Methods based on Fourier expansions have several po-
tential advantages over finite-difference methods and oth-
er local discretization schemes. For smooth fields,
Fourier expansions converge more rapidly as the number
of basis functions increases. They also diagonalize many
common differential and integral operators. These prop-
erties motivate an investigation of the applicability of
Fourier methods in quasiballooning coordinates.

First, Fourier transforms (and therefore discrete
Fourier transforms) in y are taken in the same way as for
6 since the periodicity conditions on Y are the same as
those on 6.

In order to use Fourier representations to calculate
parallel derivatives and wave numbers, the Fourier trans-
form with respect to § is required. Since the coordinate
transformation alters the periodicity conditions with
respect to &, the Fourier transform with respect to § is
also altered. Fast Fourier transforms can still be used to
do this transform. Consider the field 1/1(kx,l ) where [ is
the discrete index for §;=(/ —1)/N;, where N, is the
number of mesh points in the §{ direction. (The radial
variable has been suppressed). The discrete Fourier
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transform of y¥/(k X,l) is defined by
MN
Ylky,ke)= 121 Y(k,,exp(—2mik I /MN;) ,

where M is the number of passages made by a y =const
grid line in the § direction before it loops back on
itself. Using the periodicity condition ¥(k,,l+N;)
=exp(2mik , D)Y(k,, 1), it follows that
Ne
Ylky, ke )=M 3, exp(—2mim&/N,)
£=1

X[exp( —2mik 06 /N, (k. 6)],

where the allowed values of k, are given by
ke=M(m +k,7). Note that M7 is an integer that
represents the number of passages made by a y =const
grid line in the y direction before it loops back on itself.
Discrete Fourier transforms in the radial direction can
also be used in a similar way. Once the field is available
in k, space, it can be multiplied by a phase factor that
represents a transformation from ) to 6, so that a radial
Fourier transform becomes a sum of fields evaluated at
the same 6. Differential and integral operators that are
simple in (ky,k,) can then be applied before transform-
ing back from k, to ¥ and multiplying by a phase factor
to transform from 6 to .

V. SIMULATION CODE AND BOUNDARY CONDITIONS

In order to demonstrate the properties and advantages
of quasiballooning coordinates, a three-dimensional expli-
cit finite-difference fluid code has been written that can be
switched to use either toroidal-poloidal, nontwisted-
quasiballooning, or full quasiballooning coordinates. The
simulation region is periodic in the 6 and ¢ directions.
The boundary and periodicity conditions, viewed in phys-
ical space, are independent of the choice of coordinates.
Their representation in the two sets of coordinates is, of
course, different. Two different sets of radial boundary
conditions were implemented.

In the first, the quasiballooning radial coordinate is
made periodic. In physical space, this corresponds to
connecting the radial boundaries in such a way that at
z =0, the radial boundary conditions are periodic, while
at other values of z, there is a displacement in y that
makes the magnetic field orientation appear continuous
across the radial boundary. (The small difference be-
tween quasiballooning and ballooning coordinates can be
viewed as resulting in a small change in the ¢ profile near
the boundary. If desired this change can be eliminated by
imposing a slight restriction on L,.) This boundary con-
dition reduces to a radially periodic boundary condition
in the absence of magnetic shear.

This boundary condition is equivalent to one that has
been implemented by Kotschenreuther and Wong [13]
and can be called the “twist-shift periodic radial” (TSPR)
boundary condition. It can be used in either of two ways.
One can use parameters such that 7(1)—2(0) is an integer.
Provided that this is compatible with the equilibrium, as
in a simulation of slab physics or in a flux tube geometry,
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in ballooning or quasiballooning coordinates, this com-
pletely eliminates any radial discontinuity. This choice
does not generally make sense for a toroidal annulus
geometry for typical parameter values, since the change
in the rotational transform over a short radial distance is
usually much less than 1. The second alternative is to let
7(1)—10(0) be arbitrary. In this case, there are discon-
tinuities, for example, in particle orbits if they cross both
the radial and quasiparallel boundaries. Even though the
details of the nonlinear spectrum are then affected by the
presence of the radial boundary, the TSPR boundary con-
dition may still leave the turbulence sufficiently intact to
allow enough transport to prevent substantial quasilinear
relaxation. There is a possibility of numerical instabilities
associated with the discontinuity. If these are not prohi-
bitive, then this boundary condition may still be useful.

The TSPR boundary condition has also been imple-
mented in toroidal-poloidal and nontwisted-quasi-
ballooning coordinate versions of the code. In this case,
an explicit poloidal offset is used. There is then a jump in
the orientation of the box sides across the radial bound-
ary, as shown in Fig. 3. The jump in the box orientation
corresponds to a jump in the toroidal-poloidal wave-
number spectrum across the boundary, although indivi-
dual modes that are common to both sides of the bound-
ary are continuous across the boundary. The implemen-
tation is much simpler in true (twisting) quasiballooning
coordinates.

Finally, it is important to note that in a toroidal an-
nulus geometry, this periodicity condition is incompatible
with the equilibrium poloidal dependence of any toroidal
terms.

The second choice of boundary conditions is to set the
fields to zero at the radial boundary and to prevent quasi-
linear relaxation by damping the fields with a damping
coefficient that is finite and strong enough to suppress the
turbulence close to the boundaries, but goes smoothly to
zero at some finite distance from the boundaries. In the
simulation code discussed in the next section, the specific
form used is

(V—a)/a? 0<V<a
Y(V)=yoX 10, a<V=1—a (6)
[V—(1—a)]?/a% 1—a<V<l1.

° ¢

FIG. 3. TSPR boundary conditions. At the radial boundary

r =1, the replica simulation boxes are connected with an offset

in 0 such that the magnetic field is continuous across the bound-

ary, and so that the magnetic field is (quasi-) parallel with the &

axis just to the right of the radial boundary in each periodic re-
plica. The heavy arrows denote the magnetic-field direction.

This coefficient has a finite value y at the radial boun-
daries ¥ =0 and 1, and goes smoothly to zero at a finite
distance a 0.3 from the walls. In this case, the momen-
tum flux is controlled by the damping rate and width of
the damping layer.

The resultant damping terms result in effective sources
near the boundaries that prevent quasilinear relaxation.
If the turbulence has a finite intrinsic radial correlation
length, independent of the distance between the radial
boundaries, then it is possible to maximize the momen-
tum flux at a level that is independent of the damping lay-
er width, by making the damping rate and layer width
much larger than the radial correlation length of the tur-
bulence. In practice, however, this is difficult since the
radial extent of the simulation region necessary to do this
is significantly greater than that of the undamped region
(by at least a factor of 3—more if the damping rate and
layer width is not correctly optimized) because of the
presence of the two damping layers. It is sufficient if the
quasilinear relaxation in the undamped region is incom-
plete, provided that the mean gradients in the partially
relaxed fields can be measured with reasonable accuracy.

VI. FLUID EXAMPLE:
LONG-WAVELENGTH V¥ |;-DRIVEN TURBULENCE

A. Equations

In this section, results of simulations of long-
wavelength turbulence driven by the ‘‘drift-Kelvin-
Helmholtz” (DKH) or parallel-ion-velocity-driven (V)
instability [14,15] are presented that demonstrate the ad-
vantages of quasiballooning coordinates. In this section,
the notation has been changed from that of the previous
sections according to (V,0,§)—(x,y,z). The following
model fluid equations are used:

2 2
9, 18 _ —aVp,+D, 994 . p, 3¢ +a’D\Vi¢ ,

ot M ay ox? yayz
(7a)
v %
I __ 09 I
?‘*_VEB'VJ.U“_ ay aVI|(2¢)+“x ax2
+p vy +au, Vv (7b)
y ayz Y=
where
VEBE_VL(tX,i 5
_a x—05] 2
V“: az + lLC+ aLS ay N
_ Lu r
a= Py R ,

¢ is the electrostatic potential, v is the perturbed parallel
velocity, D., Dy, Dy, p,, p,, and p, are diffusion
coefficients, and r and R are the minor and major radii.
The normalizations are ¢ ~(Ty/e)(L,/L,), T~Ty(L,/
L,), v ~vu(Ly /L), x~L,, y~L,, z~L,,
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L,~L,L,/p;,and t~L,L,/(v,p;), where T, is the equi-
librium temperature of the ions and electrons (assumed to
be equal), e is the ion charge (taken to be the negative of
the electron charge), the equilibrium parallel velocity
profile is taken to be Vo(x)=v,x/L,, L, is an arbitrary
radial length scale that satisfies p; <<L, <<L,, L, =27,
and L,=2#7R, where v, =1/ T,/m is the ion thermal ve-
locity, m is the ion mass, and %,=L,/L,, where
L,=—[dInny(x)/dx]"!, and ny(x) is the equilibrium
density. Equation (7a) is obtained from the ion density
evolution equation, combined with quasineutrality and
adiabatic electron response. Equation (7b) is obtained
from the ion parallel momentum equation. Linearly,
these equations are subject to the DKH instability if
m, > V2. Saturation of the instability can occur due to
nonlinear EXB advection of the parallel velocity, which
is described by the second term in Eq. (7b). The normal-
ized radial flux of parallel velocity and the effective
diffusivity are given by I',(x,t)=x,={Vgp,v,), where
Vepe 1is the x component of Vgg, with the
normalizations I', ~p,v,(v, /L, )L, /L,XL,/L,) and
Xy ~PiVy(Ly /L, XL, /L,). The angle brackets denote an
average over y and z. These equations also require for
their validity that p;V, <<1 for the perturbed quantities.

Equations (7) and their basic scalings are similar to
those of a model for ITG turbulence that has been con-
sidered in some detail [7]. They are solved using the code
described in the previous subsection.

B. Results

The radially local behavior (L, = «0 ) is considered here
first. The parameter values used were p=D, D, =0.015,
D,=0.002, D;=0.001, n,= 0, and a=>5. The number
of grid cells in the x and y directions was
(N,,N,)=(59,127). The number of grid cells in the z
direction was varied on a case-by-case basis. Here, the “z
direction” refers to the toroidal direction in toroidal-
poloidal coordinates and to the quasiparallel direction in
quasiballooning coordinates. The simulations in this set
are radially bounded with damping near the boundaries
given by y7,=300 and a =0.3. Figure 4 shows results
from a simulation run with N, =29 that used quasibal-
looning coordinates. For this case, since ¢ is independent
of position, the coordinate system does not twist (i.e., 'is
independent of x).

The instability has grown through a linear phase to a
nonlinearity saturated state with partial (not complete)
quasilinear relaxation of the v, profile [Fig. 4(b)] and a
nonzero parallel velocity flux [Fig. 4(a)] that is carried
through the system by the turbulence. The potential con-
tours show structures that are extended in the radial
direction [Fig. 4(c)] and in the parallel direction [Fig.
4(d)]. When a simulation with the same parameter values
is attempted in toroidal-poloidal coordinates, no instabili-
ty or turbulence is observed. Because of inadequate
toroidal resolution, there are no linearly unstable modes.

The advantage of quasiballooning coordinates can
perhaps be seen most clearly in the scaling of the number
of grid cells needed with a. For the present demonstra-
tion runs, the moderate value a=5 has been chosen.
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FIG. 4. (a) Profile of the radial flux of parallel velocity aver-
aged over y and z, and over time intervals of Az=0.2 at times
16 =t =24; (b) profile of v averaged as in (a); (c) potential con-
tours in a x-y cut; and (d) potential contours in a y-z cut at
t =24 from a bounded simulation with L;= c and ¢, =0.5586,
with x =0.49, done in quasiballooning coordinates.

Even for this value, far fewer grid cells are needed in
quasiballooning coordinates than in toroidal-poloidal
coordinates. When quasiballooning coordinates are used,
the normalized momentum flux converges as a function
of N, to a value of 0.12, and this value is attained for
N,=15. In contrast, when toroidal-poloidal coordinates
are used, convergence is not achieved even for N,=59.
In actual experiments, a is typically of order 100. The
number of structures per box length in the y direction in-
creases strongly as a function of a [7]. If « is increased,
keeping ¢ and 7 fixed with t —T% 1/a, then the number of
grid cells needed in the toroidal direction is directly pro-
portional to the number needed in the y direction. The
number of structures per period in the parallel direction,
and therefore the number of grid cells needed in the
quasiparallel direction in quasiballooning coordinates,
however, scales as 1/a times the number of structures in
the y direction. The ratio of the number of grid cells
needed in toroidal-poloidal coordinates to the number
needed in quasiballooning coordinates therefore increases
roughly in proportion to a.

In order to attempt to empirically verify the depen-
dence of the number of grid cells necessary on « and ¢, a
series of simulation runs was done in which a and ¢ were
varied from the values given above. An effort was made
to increase N, until two values of N, gave the same
behavior and flux levels, indicating convergence. This
was done for ¢, =0.26, 0.55, and 0.97, with =35 and for
t.=0.55 with a=10. The diffusion coefficients and edge
damping rate were chosen so that the respective terms in
Egs. (7) increased in proportion to a. The results are



FLUID SIMULATIONS OF TOKAMAK TURBULENCE IN ...

4077

TABLE 1. Dependence of the normalized diffusivity for v on a, ¢, and N,, from a series of
unsheared-slab simulation runs of v turbulence. Values of ¥ =0 indicate that the particular simulation
was linearly stable. The figures given with a “+” indicate that the flux changed as a function of time
about a mean value, with a spread given by the second number. In the other cases, the momentum flux

was steady to within <3%.

X
a L N,=7 X, N,=15 N,=29 N,=59
toroidal-poloidal coordinates
5 0.26 0.20 0.1410.02 0.38 0.30
5 0.55 0 0 0.60
5 0.97 0 0.80 0.30
10 0.55 0 0 0.15
quasiballooning coordinates
5 0.26 0.27 0.29 0.29
5 0.55 0.2040.02 0.19 0.20 0.20
5 0.97 0.72 0.65 0.60
10 0.55 0.09+0.03 0.124+0.05 0.12+0.05

summarized in Table I. They partially confirm the above
reasoning, and show that quasiballooning coordinates are
superior. With quasiballooning coordinates, reasonable
convergence is achieved with N,=15 for all of the pa-
rameter choices. With toroidal-poloidal coordinates,
some indication of convergence was only seen for the
a=35,1=0.26 case. For all of the cases with ¢ above 0.26
convergence was not achieved for n, =59.

In explicit codes, it is anticipated that shorter time
steps can be used since physically stable and unwanted
high-frequency modes that are present when toroidal-
poloidal or nontwisted coordinates are used are automati-
cally removed. This was verified for the linear phase of
the simulation runs. For N, =29 and 59 and for several a
and ¢ sets, simulation runs were made for increasing
values of the time step (starting from a given value and
doubling) until numerical instability was observed in the
linear phase of the simulation. The maximum stable
timestep is given in Table II. It did not depend on N, for
the values used. This time step was larger for the quasi-
ballooning coordinate cases and decreases for the largest
values of a and ¢ used. The range of values scanned does
not, however, permit a clear scaling behavior to be dis-
cerned.

It was not possible to see a clear dependence in the
time step on coordinate systems for the nonlinear phase.
This is because for the moderate parameter values used in
the simulation runs of the previous section, the shortest

TABLE II. Maximum stable time step for the linear phase of
simulations with the values of a and ¢ given. TP denotes the
toroidal-poloidal coordinate simulations, and QB denotes the
quasiballooning coordinate simulations.

L a TP QB
0.56 5 0.001 0.002
0.56 10 0.001 0.002
0.97 5 0.001 0.002
0.97 10 0.0005 0.002

time scales that set the maximum time step appear to be
associated with the nonlinear terms. Even for these
moderate parameter values, very large simulation runs
are needed to achieve converged results for the toroidal-
poloidal coordinate cases. The time-scale separation be-
tween the unwanted high-frequency stable modes and the
physically relevant turbulence will increases with a. To
see the increase in the usable time steps in a comparison
between simulations using quasiballooning coordinates
and other coordinates, simulations with larger (more real-
istic) values of a@ and hence more poloidal grid cells are
needed. The computer resources needed to run the
toroidal-poloidal coordinate cases, are therefore prohibi-
tive due to the grid-cell number requirements. It is im-
portant to note that in physical models that include elec-
tron dynamics, the highest frequencies will be consider-
ably higher. The natural optimization of the frequency
spectrum by quasiballooning coordinates may then be
crucial.

The differences between full quasiballooning coordi-
nates and nontwisted quasiballooning coordinates for a
situation with magnetic shear will now be discussed. If ©
is independent of x, then the condition :—7<1/a can
only hold over a radial distance for which
Av=~Ax di/dx S1/a. The scale Ax defined in this way
is just the two-dimensional slab shear- (or Landau-)
damping distance. Even if one is interested in simulating
a region whose radial thickness is much less than the
profile gradient scale lengths, a key issue in determining
the transport is whether or not the radial correlation
lengths are determined by two-dimensional slab processes
or by toroidal or three-dimensional processes. In the
linear theory of toroidal modes, such as the toroidal ITG
mode, linear toroidal coupling can produce unstable
modes that have radial extents much greater than the
two-dimensional slab shear damping scale (but still small-
er than the profile gradient scales). To address such ques-
tions the radial extent of the simulation region must be
many (or at least several) times larger than the two-
dimensional slab shear damping scale. The number of
grid cells needed in a code that uses full twisting quasibal-
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looning coordinates is therefore reduced in comparison to
a code in which the coordinate system does not twist by a
factor of order the radial extent of the system divided by
the two-dimensional slab shear- (or Landau) localization
distance.

To demonstrate this point, we examine the behavior of
simulations with strong magnetic shear with quasiperiod-
ic radial boundary conditions. The parameters used are
similar to those used above, with the following excep-
tions. The ¢ profile used is «(x)=t,+(x —0.5)/(aL,),
with ¢, =0.5586 (chosen arbitrarily) and L;=0.1. The
values of the diffusion coefficients are D, =0.01,
D,=0.001, and D,=0.0005. The number of grid cells in
the z direction is again varied to determine the resolution
requirements. When run in quasiballooning coordinates,
the steady-state momentum flux was converged at
I',=0.012, with N,=15. Essentially no change in the
flux level, the field contours, nor in the overall evolution
was seen if IV, was increased to N, =29 or 57. Figure 5
shows radial profiles of the momentum flux and of the
quasilinear component of the perturbed parallel velocity,
as well as contours of |¢| in the x —y plane, with N, =29.
In contrast, when the simulations are repeated using
nontwisted quasiballooning coordinates, the results are
not converged with respect to N, even for N, =119. The
radial profiles of I", at times much later than those of
Fig. 5 for various values of N, are shown in Fig. 6.

VII. CONCLUSIONS

A set of coordinates for simulations in toroidal mag-
netic geometry, called quasiballooning coordinates, has

FIG. 5. (a) Profiles of I',, (b) profiles of the quasilinear com-
ponent of the v (c) contours of ¢ in the x-y plane, and from a
fluid simulation using quasiballooning coordinates with
t=0.5586, at x =0.5, L;=0.1, and N,=29. The profiles are
averaged as in Fig. 4, with the time intervals Az=0.1 and are
for6=¢r=<8.
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FIG. 6. Profiles of ', at late times (10=<¢<12) for (a)
N,=15, (b) N,=29, (c) N,=59, and (d) N,=119, from simula-
tion runs done in nontwisted coordinates. The parameters are
as for Fig. 5, except for the values of N,, which are shown.

been proposed and implemented. Quasiballooning coor-
dinates are straight-field-line coordinates in which one of
the coordinate directions as close as possible to that of
the magnetic field consistent with the quasiparallel grid
lines meshing exactly, without interpolation, as they cross
the boundaries of the simulation region.

Quasiballooning coordinates are useful in the simula-
tion of many instabilities (and the resulting turbulence) of
interest in fusion plasmas since for structures that are
elongated along the magnetic field, the number of grid
cells needed for a given resolution is reduced by a factor
of order the elongation of the structures compared with
the number needed in toroidal-poloidal coordinates.
Thus, they retain the full resolution advantages of bal-
looning coordinates, in which one of the coordinate
directions is exactly aligned with that of the magnetic
field, but allow the true periodicity conditions in the
toroidal-poloidal plane to be satisfied in a straightforward
and seamless way, even in the presence of magnetic shear.
For many instabilities of fusion interest, the elongation
along the magnetic field is very large and so, therefore, is
the advantage of using quasiballooning coordinates. If
the magnetic field is sheared, then the quasiballooning
coordinates must twist with the magnetic field. Even if
the coordinates are aligned with the magnetic field at one
position but do not twist, then the number of grid cells
needed for a given resolution is increased by a factor pro-
portional to the number of two-dimensional shear-
damping localization widths contained in the system.
This number can be large even if the radial extent of the
system is much less than the equilibrium gradient scale
lengths and must be large in order for a simulation to ad-
dress the radial correlation lengths, and therefore the
transport levels, in a toroidal plasma.
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Along with the direct reduction in the number of grid
cells needed, there are other advantages to using quasi-
ballooning coordinates. In explicit codes, it is expected
that shorter timesteps can be used since physically stable
and unwanted high-frequency modes that are present
when toroidal-poloidal or nontwisted coordinates are
used are automatically removed. This was verified for the
linear phase of the simulation runs, although compar-
isons for the nonlinear phase are prohibitive due to the
computer resources needed for any of the nonquasi-
ballooning-coordinate cases. Also, in particle codes, the
unwanted high-frequency modes contribute to the noise
spectrum, so that their removal is expected to result in a
significant reduction in the numerical noise. This point
will be examined in a future presentation.

The key details necessary for the implementation of
quasiballooning coordinates, both in finite-difference and
pseudospectral fluid codes have been addressed. A fluid
code was written that uses quasiballooning coordinates,
and the above points were demonstrated by applying the
code in fluid simulations of the vl’I instability and tur-
bulence.

This work represents a beginning in the use of quasi-
ballooning coordinates. We have also implemented
quasiballooning coordinates in a partially linearized
gyrokinetic particle code. The details and results will be
presented elsewhere. There are many instabilities and
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turbulent processes in toroidal plasmas whose study will
be made much easier with a quasiballooning coordinates.

There are two important issues to be addressed to
determine the general applicability of quasiballooning
coordinates. The first is their usefulness for electromag-
netic perturbations. If such fluctuations are of small am-
plitude, so that there is a “‘nearby” equilibrium with good
flux surfaces, then the methods given in this paper can be
applied directly. If, however, there are large-amplitude
magnetic perturbations, then the coordinate system will
have to be allowed to evolve in time. The second is the
case where the transformation between standard spatial
coordinates and straight-field-line coordinates is singular,
for example if there is a separatrix in the poloidal field.
This case requires special treatment. These are topics of
current research and will be reported in future presenta-
tions.
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